Senin, 20 April 2009

Pencemaran Migas di Laut

Diberitakan sebuah tanker yang membawa sekitar 30.000 ton minyak senilai 9 juta dolar AS terbakar, setelah terlibat insiden tabrakan dengan kapal kontainer di lepas pantai Dubai, Selasa (10/2). Kebakaran hebat di kedua kapal menghasilkan kepulan asap hitam yang menutupi angkasa.

Kapal tanker dengan nama Kashmir yang dibuat pada tahun 1988 ini, dalam perjalanan dari Iran menuju pelabuhan Jebel Ali di Uni Emirat Arab. Sedangkan kapal kontainer bernama Sima Buoy baru saja meninggalkan pelabuhan Jebel Ali saat insiden terjadi.

Hal di atas adalah kejadian yang kesekian kali yang berakibat pada pencemaran laut (lepas).

Tumpahan Minyak


Minyak mentah (crude oil) atau minyak bumi (petroleum, berasal dari bahasa Yunani yaitu petros berarti batuan dan oleum berarti minyak) terbentuk dari sisa tanaman atau hewan jutaan tahun lampau sebagai akibat dari pemanasan internal Bumi. Minyak Bumi tersebut merupakan senyawa kimia yang amat kompleks sebagai gabungan dari senyawa hidrokarbon ( dari unsur karbon dan hidrogen ) dan non hidrokarbon ( dari unsur oksigen, sulfur, nitrogen dan trace metal).

Jutaan tahun lampau sebelum manusia memiliki kemampuan memanfaatkan minyak bumi, pencemaran minyak di lautan sebetulnya telah terjadi. Material mengandung minyak yang memasuki lautan berasal dari pembusukan tumbuhan dan hewan secara alami dan melalui presipitasi hidrokarbon dari atmosfer. Hanya saja sebagian besar pencemar akan di biodegradasi (diuraikan) oleh organisme secara alami (meskipun dalam jangka waktu lama) sehingga dampak buruk terhadap lingkungan menjadi sangat kecil.


Kini, tumpahan minyak diakibatkan oleh kegiatan penambangan lepas pantai, kebocoran dan kecelakaan kapal tanker, kebocoran saluran pipa minyak, dan lainnya, telah menimbulkan kerusakan yang hebat pada tingkat lokal baik bagi tumbuhan, hewan ataupun pada manusia (secara tidak langsung).

Dampak Buruk

Akibat buruk yang segera terlihat adalah rusaknya estetika pantai akibat penampakan dan bau dari material minyak. Residu yang berwarna gelap yang terdampar di pantai akan menutupi batuan, pasir, tumbuhan dan hewan. Gumpalan tar yang terbentuk dalam proses pelapukan minyak akan hanyut dan terdampar di pantai. Akan sulit menemukan bagian pantai yang tidak terkontaminasi dikarenakan penyebarannya yang cepat. Seperti kasus di perairan pulau Pramuka, kepulauan Seribu.

Tumpahan minyak akan mengakibatkan kerusakan biologis, bisa merupakan efek letal dan efek subletal. Efek letal yaitu reaksi yang terjadi saat zat-zat fisika dan kimia mengganggu proses sel ataupun subsel pada makhluk hidup hingga kemungkinan terjadinya kematian. Efek subletal yaitu memengaruhi kerusakan fisiologis dan perilaku namun tidak mengakibatkan kematian secara langsung. Namun kematian dimungkinkan akibat terganggunya proses makan, pertumbuhan dan perilaku tidak normal. Terumbu karang akan mengalami efek letal dan subletal dimana pemulihannya memakan waktu lama dikarenakan kompleksitas dari komunitasnya.

Pertumbuhan bakteri laut akan terhambat akibat keberadaan senyawa toksik dalam komponen minyak bumi, juga senyawa toksik yang terbentuk dari proses biodegradasi. Bahkan dalam beberapa kasus, senyawa toksik dari proses biodegradasi dapat lebih berbahaya. Dimungkinkan pula terjadi pertambahan mikroorganisme/organisme yang mampu memanfaatkan hidrokarbon minyak bumi, dikarenakan terjadi penambahan nutrien pada lokasi yang tercemar, untuk metabolismenya ataupun yang memanfaatkan produk metabolisme tersebut, tetapi secara umum terdapat pengurangan jenis mikroorganisme dan organisme.

Pengaruh lainnya adalah penurunan populasi alga dan protozoa akibat kontak dengan toksik pada slick (lapisan minyak di permukaan air). Pengaruh pada plankton tidak signifikan dikarenakan kemampuannya mereproduksi secara cepat, sehingga penurunan populasinya yang sempat terjadi bisa dikembalikan. Berbeda dengan plankton, udang-udangan, ikan dan moluska yang terdapat di antara plankton akan sangat terpengaruh dikarenakan proses pemulihannya memakan waktu bertahun-tahun.

Dampak yang sangat terasa dialami organisme yang tidak bisa bergerak (immobile) seperti organisme bentik karena tidak bisa lolos dari wilayah tercemar. Dalam beberapa kasus pemulihan pada organisme bentik memakan waktu lebih dari 10 tahun. Apalagi bila kejadian tumpahan minyak di pantai dengan dasar lembut (soft bottom) dimana minyak mampu persisten dalam jangka waktu lama dibandingkan pantai berbatu (berdasar keras).

Yang paling memprihatinkan adalah terjadinya kematian pada burung-burung laut. Hal ini karena slick membuat permukaan laut lebih tenang dan menarik burung untuk hinggap di atasnya ataupun menyelam guna mencari makanan. Saat kontak dengan minyak, terjadi peresapan minyak ke dalam bulu dan merusak sistem kekedapan air dan isolasi sehingga burung akan kedinginan untuk selanjutnya mati. Kematian burung dalam jumlah besar terjadi setiap ada pencemaran minyak di laut. Kehilangan jumlah populasi burung tidak tergantikan dalam waktu pendek karena laju reproduksinya yang lambat dan umurnya relatif panjang. Apalagi upaya menyelamatkan burung dengan cara membersihkannya seringkali tidak berhasil.

Pada mamalia laut yang mudah bergerak (mobile) pengaruh tumpahan minyak biasanya kecil dikarenakan kemampuannya menghindar dari cakupan daerah tumpahan.

Pengaruh tidak langsung yang dialami manusia adalah dengan melihat kerusakan yang dialami oleh ikan. Jumlah ikan yang mati memang tidak terlalu banyak dikarenakan kemampuannya menghindar. Namun, ancaman terbesar dialami oleh bentic fish yang mengalami akumulasi minyak dalam tubuhnya, dan area bertelur (spawning area) karena fase larva sangat sensitif terhadap toksisitas minyak. Ternjadi akumulasi senyawa aromatik (karsinogen) pada jaringan ikan. Dan manusia baru merasakan keberadaan hidrokarbon minyak bumi di jaringan ikan / hewan yang dimakannya pada konsentrasi 5 – 20 ppm.

Penelitian pada insiden Exxon Valdez pada 24 Maret 1989 di Prince William Sound, Alaska dimana lebih dari 11 juta gallon minyak tumpah menunjukkan bahwa konsentrasi senyawa aromatik pada kerang Mytilus Trossulus meningkat dua kali lipat dalam waktu 6 bulan setelah terjadi tumpahan.

Pemantauan

Sebelum upaya penanggulangan tumpahan minyak dilakukan, maka tindakan pertama yang diambil adalah melakukan pemantauan tumpahan yang terjadi guna mengetahui secara pasti jumlah minyak yang lepas ke lautan serta kondisi tumpahan, misalnya terbentuknya emulsi.

Ada dua jenis upaya yang dilakukan yaitu dengan pengamatan secara visual dan penginderaan jauh (remote sensing). Karena ada keterbatasan pada masing-masing teknik tersebut, seringkali digunakan kombinasi beberapa teknik.

Pengamatan visual melalui pesawat merupakan teknik yang reliable, namun sering terjadi pada peristiwa tumpahan minyak yang besar dengan melibatkan banyak pengamat, laporan yang diberikan sangat bervariasi.

Ada beberapa faktor yang membuat pemantauan dengan teknik ini menjadi kurang dapat dipercaya seperti pada tumpahan jenis minyak yang sangat ringan akan segera mengalami penyebaran (spreading ) dan menjadi lapisan sangat tipis. Pada kondisi pencahayaan ideal akan terlihat warna terang atau pelangi. Namun, seringkali penampakan lapisan ini sangat bervariasi tergantung jumlah cahaya matahari, sudut pengamatan dan permukaan laut. Karenanya, pengamatan ketebalan minyak berdasarkan warna slick kurang bisa dipercaya. Faktor lainnya adalah kondisi lingkungan setempat dan prediksi coverage area.

Cara kedua dengan menggunakan metode penginderaan jarak jauh yang dilakukan dengan berbagai macam teknik seperti Side-looking Airborne Radar (SLAR) yang telah digunakan secara luas. SLAR memiliki keuntungan yaitu bisa dioperasikan segala waktu dan segala cuaca, menjangkau wilayah yang lebih luas dengan hasil pengindraan lebih detail dengan kekintrasan tinggi dan bisa ditransmisikan. Sayangnya teknik ini hanya bisa mendeteksi laisan minyak yang tebal dan tidak bisa mendeteksi minyak yang berada dibawah air dan kondisi laut sangat tenang.

Selain SLAR digunakan pula teknik Micowave Radiometer, Infrared-ultraviolet Line Scanner dan LANDSAT Satellite System. Berbagai teknik ini digunakan besama guna menghasilkan informasi yang akurat dan cepat.

Penanggulangan

Beberapa teknik penanggulangan tumpahan minyak diantaranya in-situ burning, penyisihan secara mekanis, bioremediasi, penggunaan sorbent dan penggunaan bahan kimia dispersan. Setiap teknik ini memiliki laju penyisihan minyak berbeda dan hanya efektif pada kondisi tertentu.

In-situ burning adalah pembakaran minyak pada permukaan air sehingga mampu mengatasi kesulitan pemompaan minyak dari permukaan laut, penyimpanan dan pewadahan minyak serta air laut yang terasosiasi, yang dijumpai dalam teknik penyisihan secara fisik. Cara ini membutuhkan ketersediaan booms (pembatas untuk mencegah penyebaran minyak) atau barrier yang tahan api.

Beberapa kendala dari cara ini adalah pada peristiwa tumpahan besar yang memunculkan kesulitan untuk mengumpulkan minyak dan mempertahankan pada ketebalan yang cukup untuk dibakar serta evaporasi pada komponen minyak yang mudah terbakar. Sisi lain, residu pembakara yang tenggelam di dasar laut akan memberikan efek buruk bagi ekologi. Juga, kemungkinan penyebaran api yang tidak terkontrol.

Cara kedua yaitu penyisihan minyak secara mekanis melalui dua tahap yaitu melokalisir tumpahan dengan menggunakan booms dan melakukan pemindahan minyak ke dalam wadah dengan menggunakan peralatan mekanis yang disebut skimmer.

Upaya ini terhitung sulit dan mahal meskipun disebut sebagai pemecahan ideal terutama untuk mereduksi minyak pada area sensitif, seperti pantai dan daerah yang sulit dibersihkan dan pada jam-jam awal tumpahan. Sayangnya, keberadaan angin, aur dan gelombang mengakibatkan cara ini menemui banyak kendala.

Cara ketiga adalah bioremediasi yaitu mempercepat proses yang terjadi secara alami, misalkan dengan menambahkan nutrien, sehingga terjadi konversi sejumlah komponen menjadi produk yang kurang berbahaya seperti CO2 , air dan biomass. Selain memiliki dampak lingkunga kecil, cara ini bisa mengurangi dampak tumpahan secara signifikan. Sayangnya, cara ini hanya bisa diterapkan pada pantai jenis tertentu, seperti pantai berpasir dan berkerikil, dan tidak efektif untuk diterapkan di lautan.

Cara keempat dengan menggunakan sorbent yang bisa menyisihkan minyak melalui mekanisme adsorpsi (penempelan minyak pad permukaan sorbent) dan absorpsi (penyerapan minyak ke dalam sorbent). Sorbent ini berfungsi mengubah fasa minyak dari cair menjadi padat sehingga mudah dikumpulkan dan disisihkan.

Sorbent harus memiliki karakteristik hidrofobik,oleofobik dan mudah disebarkan di permukaan minyak, diambil kembali dan digunakan ulang. Ada 3 jenis sorbent yaitu organik alami (kapas, jerami, rumput kering, serbuk gergaji), anorganik alami (lempung, vermiculite, pasir) dan sintetis (busa poliuretan, polietilen, polipropilen dan serat nilon)

Cara kelima dengan menggunakan dispersan kimiawi yaitu dengan memecah lapisan minyak menjadi tetesan kecil (droplet) sehingga mengurangi kemungkinan terperangkapnya hewan ke dalam tumpahan. Dispersan kimiawi adalah bahan kimia dengan zat aktif yang disebut surfaktan (berasal dari kata : surfactants = surface-active agents atau zat aktif permukaan) (lebih jauh lihat : Dispersan Kimiawi, Salah Satu Solusi Pencemaran Minyak di Laut ).

Epilog

Mengingat bahwa tumpahan minyak mentah membawa akibat yang amat luas pada lingkungan laut maka penanganannya tidak bisa diserahkan hanya pada satu institusi pemerintah saja. Perlu melibatkan kerja sama berbagai institusi seperti Departemen Lingkungan Hidup, Departemen Pertambangan dan Energi, Kepolisian, Pemerintah Daerah, Kementrian Riset dan Teknologi, Departeman Kelautan dan Perikanan, Departemen Perhubungan, termasuk pula masyarakat dan kalangan LSM. Kondisi ini perlu dipikirkan sejak dini.

Hal ini didasarkan atas pertimbangan bahwa penanggulangan tumpahan minyak bukan hanya meliputi cara pemantauan yang menuntut teknologi yang canggih, cara menghilangkan minyak yang menuntut penggunaan teknologi yang bisa dipertanggungjawabkan dan ramah lingkungan, namun meliputi pula penelitian dampak tumpahan minyak tersebut dan upaya rehabilitasi lingkungan yang tercemar baik hewan, tumbuhan, maupun estetika laut dan pantai.

Bagaimanapun juga luas wilayah laut Indonesia sebesar 2/3 dari seluruh wilayah nusantara, dan pantai sepanjang lebih dari 80.000 km begitu berharga dan harus dijaga. Terlebih bila mengingat bahwa sekarang ini sebagian besar wilayah pantai tersebut telah mengalami kerusakan parah akibat ketidaktahuan, keteledoran, dan penggunaan yang menyalami rambu-rambu keamanan lingkungan.

Tampaknya perlu diberikan aturan yang tegas di dalam hal eksplorasi dan eksploitasi minyak serta penggunaan bahan bakar minyak pada sarana transportasi laut. Dan hukuman yang setimpal bila terjadi penyalahgunaan aturan yang ada.

Sumber : http://wyuliandari.wordpress.com/2009/02/16/pencemaran-minyak-di-laut/


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......

Lumpur lapindo

Banjir Lumpur Panas Sidoarjo atau Lumpur Lapindo atau Lumpur Sidoarjo (Lusi) , adalah peristiwa menyemburnya lumpur panas di lokasi pengeboran PT Lapindo Brantas di Desa Renokenongo, Kecamatan Porong, Kabupaten Sidoarjo, Jawa Timur, sejak tanggal 27 Mei 2006, bersamaan dengan gempa berkekuatan 5,9 SR yang melanda Yogyakarta. Semburan lumpur panas selama beberapa bulan ini menyebabkan tergenangnya kawasan permukiman, pertanian, dan perindustrian di tiga kecamatan di sekitarnya, serta mempengaruhi aktivitas perekonomian di Jawa Timur.

Lokasi :


Lokasi semburan lumpur ini berada di Porong, yakni kecamatan di bagian selatan Kabupaten Sidoarjo, sekitar 12 km sebelah selatan kota Sidoarjo. Kecamatan ini berbatasan dengan Kecamatan Gempol (Kabupaten Pasuruan) di sebelah selatan.

Lokasi semburan hanya berjarak 150-500 meter dari sumur Banjar Panji-1 (BJP-1), yang merupakan sumur eksplorasi gas milik Lapindo Brantas sebagai operator blok Brantas. Oleh karena itu, hingga saat ini, semburan lumpur panas tersebut diduga diakibatkan aktivitas pengeboran yang dilakukan Lapindo Brantas di sumur tersebut. Pihak Lapindo Brantas sendiri punya dua teori soal asal semburan. Pertama, semburan lumpur berhubungan dengan kegiatan pengeboran. Kedua, semburan lumpur kebetulan terjadi bersamaan dengan pengeboran akibat sesuatu yang belum diketahui. Namun bahan tulisan lebih banyak yang condong kejadian itu adalah akibat pemboran, walaupun pendapat tersebut ketika dipraktikan tidak dapat menghentikan luapan lumpur tersebut.



Lokasi tersebut merupakan kawasan pemukiman dan di sekitarnya merupakan salah satu kawasan industri utama di Jawa Timur. Tak jauh dari lokasi semburan terdapat jalan tol Surabaya-Gempol, jalan raya Surabaya-Malang dan Surabaya-Pasuruan-Banyuwangi (jalur pantura timur), serta jalur kereta api lintas timur Surabaya-Malang dan Surabaya-Banyuwangi,Indonesia

Perkiraan penyebab kejadian

Ada yang mengatakan bahwa lumpur Lapindo meluap karena kegiatan PT Lapindo di dekat lokasi itu, karena banyak kalangan yang tidak mengetahui bahwa luapan lumpur bukan keluar dari lubang pemboran yang dilakukan PT LAPINDO.

Lapindo Brantas melakukan pengeboran sumur Banjar Panji-1 pada awal Maret 2006 dengan menggunakan perusahaan kontraktor pengeboran PT Medici Citra Nusantara. Kontrak itu diperoleh Medici atas nama Alton International Indonesia, Januari 2006, setelah menang tender pengeboran dari Lapindo senilai US$ 24 juta.

Pada awalnya sumur tersebut direncanakan hingga kedalaman 8500 kaki (2590 meter) untuk mencapai formasi Kujung (batu gamping). Sumur tersebut akan dipasang selubung bor (casing ) yang ukurannya bervariasi sesuai dengan kedalaman untuk mengantisipasi potensi circulation loss (hilangnya lumpur dalam formasi) dan kick (masuknya fluida formasi tersebut ke dalam sumur) sebelum pengeboran menembus formasi Kujung.

Sesuai dengan desain awalnya, Lapindo “sudah” memasang casing 30 inchi pada kedalaman 150 kaki, casing 20 inchi pada 1195 kaki, casing (liner) 16 inchi pada 2385 kaki dan casing 13-3/8 inchi pada 3580 kaki (Lapindo Press Rilis ke wartawan, 15 Juni 2006). Ketika Lapindo mengebor lapisan bumi dari kedalaman 3580 kaki sampai ke 9297 kaki, mereka “belum” memasang casing 9-5/8 inchi yang rencananya akan dipasang tepat di kedalaman batas antara formasi Kalibeng Bawah dengan Formasi Kujung (8500 kaki).


Diperkirakan bahwa Lapindo, sejak awal merencanakan kegiatan pemboran ini dengan membuat prognosis pengeboran yang salah. Mereka membuat prognosis dengan mengasumsikan zona pemboran mereka di zona Rembang dengan target pemborannya adalah formasi Kujung. Padahal mereka membor di zona Kendeng yang tidak ada formasi Kujung-nya. Alhasil, mereka merencanakan memasang casing setelah menyentuh target yaitu batu gamping formasi Kujung yang sebenarnya tidak ada. Selama mengebor mereka tidak meng-casing lubang karena kegiatan pemboran masih berlangsung. Selama pemboran, lumpur overpressure (bertekanan tinggi) dari formasi Pucangan sudah berusaha menerobos (blow out) tetapi dapat diatasi dengan pompa lumpurnya Lapindo (Medici).
Underground Blowout (semburan liar bawah tanah)

Setelah kedalaman 9297 kaki, akhirnya mata bor menyentuh batu gamping. Lapindo mengira target formasi Kujung sudah tercapai, padahal mereka hanya menyentuh formasi Klitik. Batu gamping formasi Klitik sangat porous (bolong-bolong). Akibatnya lumpur yang digunakan untuk melawan lumpur formasi Pucangan hilang (masuk ke lubang di batu gamping formasi Klitik) atau circulation loss sehingga Lapindo kehilangan/kehabisan lumpur di permukaan.

Akibat dari habisnya lumpur Lapindo, maka lumpur formasi Pucangan berusaha menerobos ke luar (terjadi kick). Mata bor berusahaditarik tetapi terjepit sehingga dipotong. Sesuai prosedur standard, operasi pemboran dihentikan, perangkap Blow Out Preventer (BOP) di rig segera ditutup & segera dipompakan lumpur pemboran berdensitas berat ke dalam sumur dengan tujuan mematikan kick. Kemungkinan yang terjadi, fluida formasi bertekanan tinggi sudah terlanjur naik ke atas sampai ke batas antara open-hole dengan selubung di permukaan (surface casing) 13 3/8 inchi. Di kedalaman tersebut, diperkirakan kondisi geologis tanah tidak stabil & kemungkinan banyak terdapat rekahan alami (natural fissures) yang bisa sampai ke permukaan. Karena tidak dapat melanjutkan perjalanannya terus ke atas melalui lubang sumur disebabkan BOP sudah ditutup, maka fluida formasi bertekanan tadi akan berusaha mencari jalan lain yang lebih mudah yaitu melewati rekahan alami tadi & berhasil. Inilah mengapa surface blowout terjadi di berbagai tempat di sekitar area sumur, bukan di sumur itu sendiri.

Perlu diketahui bahwa untuk operasi sebuah kegiatan pemboran MIGAS di Indonesia setiap tindakan harus seijin BP MIGAS, semua dokumen terutama tentang pemasangan casing sudah disetujui oleh BP MIGAS.

Sumber : http://id.wikipedia.org/wiki/Banjir_lumpur_panas_Sidoarjo


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......

Minggu, 19 April 2009

Metode Sensing


Bumi memiliki permukaan dan variabel yang sangat kompleks. Relief topografi bumi dan komposisi materialnya menggambarkan bebatuan pada mantel bumi dan material lain pada permukaan dan juga menggambarkan faktor-faktor yang mempengaruhi perubahan. Masing-masing tipe bebatuan, patahan di muka bumi atau pengaruh-pengaruh gerakan kerak bumi serta erosi dan pergeseran-pergeseran muka bumi menunjukkan perjalanan proses hingga membangun muka bumi seperti saat ini. Proses ini dapat difahami melalui disiplin ilmu geo-morfologi.

Eksplorasi sumber daya mineral merupakan salah satu aktifitas pemetaan geologi yang penting. Pemetaan geologi sendiri mencakup identifikasi pembentukan lahan (landform), tipe bebatuan, struktur bebatuan (lipatan dan patahannya) dan gambaran unit geologi. Saat ini hampir seluruh deposit mineral di permukaan dan dekat permukaan bumi telah ditemukan. Karenanya pencarian sekarang dilakukan pada lokasi deposit jauh di bawah permukaan bumi atau pada daerah-daerah yang sulit dijangkau. Metode geo-fisika dengan kemampuan penetrasi ke dalam permukaan bumi secara umum diperlukan dalam memastikan keberadaan deposit ini ?inyak bumi dan gas dalam pembicaraan kita-. Akan tetapi informasi awal tentang kawasan berpotensi untuk eksplorasi mineral lebih banyak dapat diperoleh melalui interpretasi ciri-ciri khusus permukaan bumi pada foto udara atau citra satelit.



Belakangan analisa menggunakan citra satelit lebih banyak dilakukan daripada foto udara, karena citra satelit memiliki beberapa nilai lebih, seperti:

1. mencakup area yang lebih luas, sehingga memungkinkan dilakukan analisa dalam skala regional, yang seringkali menguntungkan untuk memperoleh gambaran geologis area tersebut;

2. memiliki kemungkinan penerapan sensor pendeteksi multi-spektral dan bahkan hiper-spektral yang nilainya dituangkan secara kuantitatif (disebut derajat keabuan atau Digital Number dalam remote sensing), sehingga memungkinan aplikasi otomatis pada komputer untuk memahami dan mengurai karakteristik material yang diamati;

3. memungkinkan pemanfaatkan berbagai jenis data, seperti data sensor optik dan sensor radar, serta juga kombinasi data lain seperti data elevasi permukaan bumi, data geologi, jenis tanah dan lain-lain, sehingga dapat ditentukan solusi baru dalam menentukan antar-hubungan berbagai sifat dan fenomena pada permukaan bumi.

Tulisan singkat ini akan mengupas bagaimana minyak dan gas bumi tersimpan di perut bumi, bagaimana hubungan lokasi tersimpannya mineral ini dengan struktur bebatuan di dalamnya. Proses rangkaian eksplorasi dijelaskan secara umum. Kemudian untuk menjelaskan potensi teknik remote sensing dalam menemukan lokasi tersebut, akan dijelaskan tentang fungsi pemetaan geologi dan hubungannya dengan pendugaan struktur bebatuan di bawah permukaan bumi, tempat yang memungkinkan ditemukannya minyak dan gas bumi

Proses Pembentukan

Minyak dan gas dihasilkan dari pembusukan organisma, kebanyakannya tumbuhan laut (terutama ganggang dan tumbuhan sejenis) dan juga binatang kecil seperti ikan, yang terkubur dalam lumpur yang berubah menjadi bebatuan. Proses pemanasan dan tekanan di lapisan-lapisan bumi membantu proses terjadinya minyak dan gas bumi. Cairan dan gas yang membusuk berpindah dari lokasi awal dan terperangkap pada struktur tertentu. Lokasi awalnya sendiri telah mengeras, setelah lumpur itu berubah menjadi bebatuan.

Minyak dan gas berpindah dari lokasi yang lebih dalam menuju bebatuan yang cocok. Tempat ini biasanya berupa bebatuan-pasir yang berporos (berlubang-lubang kecil) atau juga batu kapur dan patahan yang terbentuk dari aktifitas gunung berapi bisa berpeluang menyimpan minyak. Yang paling penting adalah bebatuan tempat tersimpannya minyak ini, paling tidak bagian atasnya, tertutup lapisan bebatuan kedap. Minyak dan gas ini biasanya berada dalam tekanan dan akan keluar ke permukaan bumi, apakah dikarenakan pergerakan alami sebagian lapisan permukaan bumi atau dengan penetrasi pengeboran. Bila tekanan cukup tinggi, maka minyak dan gas akan keluar ke permukaan dengan sendirinya, tetapi jika tekanan tak cukup maka diperlukan pompa untuk mengeluarkannya.

Proses Eksplorasi: Pemetaan Lineaments, Lithologic dan Geo-botanic

Eksplorasi sumber minyak dimulai dengan pencarian karakteristik pada permukaan bumi yang menggambarkan lokasi deposit. Pemetaan kondisi permukaan bumi diawali dengan pemetaan umum (reconnaissance), dan apabila ada indikasi tersimpannya mineral, dimulailah pemetaan detil. Kedua pemetaan ini membutuhkan kerja validasi lapangan, akan tetapi kerja pemetaan ini sering lebih mudah jika dibantu foto udara atau citra satelit. Setelah proses pemetaan, kerja eksplorasi lebih intensif pada metoda-metoda geo-fisika, terutama seismik, yang dapat memetakan konstruksi bawah permukaan bumi secara 3-dimensi untuk menemukan lokasi deposit secara tepat. Kemudian dilakukan uji pengeboran.

Sumbangan teknik remote sensing terutama diberikan pada proses pemetaan, yaitu pemetaan lineaments, jenis bebatuan di permukaan bumi dan jenis tetumbuhan.

Eksplorasi minyak dan gas bumi selalu bergantung pada peta permukaan bumi dan peta jenis-jenis bebatuan serta struktur-struktur yang memberi petunjuk akan kondisi di bawah permukaan bumi dengan yang cocok untuk terjadinya akumulasi minyak dan gas. Remote sensing berpotensi dalam penentuan lokasi deposit mineral ini melalui pemetaan lineaments. Lineaments adalah penampakan garis dalam skala regional sebagai akibat sifat geo-morfologis seperti alur air, lereng, garis pegunungan, dan sifat menonjol lain yang menampak dalam bentuk zona-zona patahan. Dengan menggunakan citra satelit gambaran keruangan alur air misalnya dapat dilihat dalam skala luas, sehingga kemungkinan mencari relasi keruangan untuk lokasi deposit mineral lebih besar.

Pemetaan lineament walaupun dapat dilakukan secara monoskopik (menggunakan satu citra), tetapi akan lebih produktif jika digabungkan dengan pemetaan lithologic atau pemetaan unit-unit bebatuan yang dilakukan secara stereoskopik (yang dapat mendeteksi ketinggian, karena dilakukan pada dua buah citra stereo). Kalangan ahli geologi meyakini bahwa refleksi gelombang elektromagnetik pada kisaran 1,6 sampai 2,2 mikrometer (=10-6 meter) atau pada spektrum pertengahan infra-merah (1,3 ·3,0 mikrometer) sangat cocok untuk eksplorasi mineral dan pemetaan lithologic. Keberhasilan pemetaan ini bergantung pada bentuk topografi dan karakteristik spektral sebagaimana diamati citra satelit. Untuk kawasan yang dipenuhi tumbuhan, mesti dilakukan pendekatan geo-botanic, yaitu pengetahuan tentang hubungan antara jenis tetumbuhan dengan kebutuhan nutrisi serta air pada tanah tempat tumbuhan ini tumbuh. Dengan demikian distribusi tetumbuhan pun dapat menjadi indikator dalam mendeteksi komposisi tanah dan material bebatuan di bawahnya.

Interpretasi citra dalam menemukan garis-garis patahan geologis memang membutuhkan keahlian tersendiri. Jika hanya mengandalkan lineaments, maka beberapa riset menunjukkan cukup banyak perbedaan interpretasi. Karenannya data garis ini dikorelasikan dengan karakteristik lain yang tertangkap sensor remote sensing, yaitu jenis bebatuan, yang merupakan cerminan mineralisasi permukaan bumi. Studi tentang jenis bebatuan dan respon spektral sangat membantu pencarian permukaan di mana deposit mineral tersimpan.


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......



Pada saat ini harga minyak sedang membumbung tinggi, dan sempat menembus angka $130 yang merupakan harga tertinggi dalam sejarah industri perminyakan. Negara-negara pengekspor minyak menikmati windfall profit yang tidak sedikit, termasuk negara-negara yang tergabung dalam OPEC (kecuali Indonesia?). Demikian halnya dengan perusahaan-perusahaan minyak, dimana kondisi harga minyak yang tinggi ini membuat Exxon Mobil mampu muncul sebagai perusahaan yang menghasilkan akumulasi profit tertinggi (2000-2004) sebesar $88.1 milyar melampaui General Electric ($74.2 milyar).

Cadangan minyak dunia terus menurun, dikarenakan temuan sumber-sumber minyak baru tidak seimbang dengan kebutuhan energi yang ada. Negara adidaya seperti Amerika Serikat membutuhkan bahan bakar minyak sekitar 21 juta barrel per hari, ini lebih dari dua puluh kali lipat produksi minyak Indonesia sekarang, dan 60% kebutuhannya harus diimport dari luar Amerika. Ditambah lagi dengan China yang didorong oleh kemajuan ekonominya merubah negara ini semakin ‘rakus’ akan energi, serta India yang juga sedang mengalami kemajuan ekonomi yang pesat.


Kondisi politik dibeberapa negara penghasil minyak juga merupakan faktor pendorong naiknya harga minyak. Gejolak di Irak yang tidak kunjung reda ditambah dengan pertikaian antara Turki dengan orang-rang Kurdish di bagian barat-utara Irak , kondisi politik di Venezuela, masalah nuklir di Iran dan sengketa antar suku serta kegiatan bersenjata oleh para pemuda liar (area boys) didaerah penghasil minyak di Nigeria, memberikan kontribusi terhadap tingginya harga minyak saat ini.

Lalu darimana sumber energi lainnya akan didapatkan? Berbicara tentang hidrogen sebagai sumber energi yang terbarukan masih membutuhkan waktu yang panjang. Sekitar dua puluh tahun lagi menurut prediksi para ahli, hidrogen dapat menjadi sumber energi yang ekonomis setelah masalah-masalah teknis dasar mulai dari cara penyimpanannya hingga aspek keselamatan pemakaian energi hidrogen dapat teratasi. Jadi posisi minyak sebagai sumber energi utama masih belum dapat disingkirkan, yang diikuti oleh batu bara dan gas alam sebagai sumber energi.


wal Mula Evaluasi Formasi
Kapan sebenarnya sumur minyak mulai digali? Dari catatan yang ada disebutkan bahwa di China (sekitar tahun 347 SM) sumur minyak digali sampai ke dalaman 800 kaki dengan menggunakan bambu yang ujungnya dipasang mata bor. Marco Polo ketika dalam perjalanannya tahun 1264 mencatat bahwa orang di Baku, Azerbaijan telah menggunakan minyak dari dalam tanah sebagai penerangan ketika orang di Eropa masih menggunakan minyak dari ikan paus.

Sumur minyak modern pertama digali pada tahun 1847 di lapangan minyak Bibi-Eybat (Baku, Azerbaijan) oleh insinyur Rusia bernama F.N. Semyenov. Sedangkan penggalian sumur minyak di Amerika Serikat pertama kali pada tahun 1859 di Titusville, Pennsylvania oleh Kolonel Edwin Drake (dia sebenarnya bukan seorang militer, tetapi karena tanggung jawab yang besar, gelar kolonel diberikan kepadanya).


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......

Sabtu, 18 April 2009

Bagaimana caranya Indonesia tetap jadi anggota OPEC & peluang US $ 3,8 Milyard

Salah satu andalan peluang Indonesia menjadi exportir crude oil adalah exploitasi ladang minyak di Banyu Urip, Cepu. Inilah salah satu tantangan luar biasa bagi para insinyur Indonesia. Akuisisi ladang minyak ini penuh dengan kontroversi di tahun 2004-2005. Widya purnama pernah memaksakan agar ladang Cepu untuk dimiliki sepenuhnya oleh Pertamina. Baca kronologinya disini

Pengembangan ladang Cepu (Banyu urip) akan memakan investasi Rp 35 Triliun (US $ 3.8 Milyard). Proyek yang yang saat ini terhambat pembebasan lahan, akan terdiri dari 2(dua) tahap :

* Tahap pertama (Early processing facilities) – target produksi max 20.000 barrel per day

* Tahap kedua (Main processing facilities) – target produksi menjadi max 165.000 barrel per day

Saat ini kegiatan Tahap pertama (Early Processing Facilities) sudah dimulai di Cepu. Kegiatan ini berupa pemasangan fasilitas pengumpulan, pemasangan pipa dan pemompaan. Menurut rencana pada akhir tahun 2008 atau awal 2009, ditargetkan 20.000 barrel dapat dialirkan dengan memakai fasilitas JOB Petrochina sebanyak 10.000 barrel dan sisanya10.000 barrel akan diolah di kilang kecil setempat.

Namun yang paling spektakuler adalah pelaksanaan Tahap kedua (main processing facilities) yang ditargetkan harus selesai tahun 2011. Seperti pada gambar, proyek raksasa ini akan terdiri dari 5(lima) bagian yang akan ditenderkan sebagai berikut :

1. Fasilitas pengumpulan minyak di daerah Banyu urip

2. Infrastruktur jalan dan juga penampungan air dari Sungai Bengawan solo

3. Pipeline dari Banyu urip ke pantai utara Jawa Timur

4. Pipeline dibawah laut dari sekitar Tuban ke kapal penyimpan (Floating storage)

5. Kapal penyimpan di tengah laut (Floating Storage Offshore – FSO)

Demikian peluang dan tantangan untuk menjadikan Indonesia surplus minyak bumi kembali. Amien

Sumber: http://triharyo.com/?pilih=news&aksi=lihat&id=85


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......

PENELITIAN LABORATARIUM TENTANG PENINGKATAN PEROLEHAN MINYAK DENGAN CARBONATED WATERFLOODING PADA PERALATAN CORE FLOOD

Berdasarkan penelitian-penelitian sebelumnya injeksi CO2 tercampur mampu menguras minyak hingga 60-90% minyak mula-mula namun kadangkala tekanan tercampur minimum CO2 jauh lebih besar dari pada tekanan rekah formasi sehingga injeksi CO2 tercampur menjadi terbatas. Carbonated water flooding merupakan salah satu metode yang dikembangkan untuk mengatasi hal tersebut.
Carbonated Water Flooding aalah metode peningkatan perolehan minyak (EOR) yang menggunkan CO2 sebagai fluida terlarut dalam air. CO2 terlarut didalam air akan meningkatkan viskositas air injeksi dan menurunkan mobilitasnya. Dilain pihak, selama pendesakan CO2 terlarut akan melepaskan diri dan mekarut kedalam minyak sehingga menurunkan viskositas minyak dan juga mengembangkan minyak
Dalam penelitian ini digunakan peralatan Core Flood TM-ITB hasil rancang bangun, dan sebagai variabel divariasikan 3 (tiga) kompisisi tingkat kejenuhan CO2 minyak. Kemudian dibandingkan pula terhadap injeksi air murni (waterflood).
Dari hasil penelitian ini diperoleh bahwa semakin tinggi tingkat kejenuhan CO2 didalam air akan semakin meningkatkan perolehan minyak. Apabila dibandingkan dengan injeksi air murni, Carbonated water floodng mampu meningkatkan perolehan minyak antara 5.46%, 13.55%, dan 24.07%, masing-masing untuk tingkat kejenuhan CO2 dalam air 24.22%, 48.42% dan 72.6%. kemudian berdasarkan sudut orientasi pendesakan care yaitu vertikal keatas (90o), miring (45o) dan horizontal dengan arah pendesakan minyak dari bawah, masing-masing memberikan perolehan minyak 68.33%, 62.19% dan 52.18% pada 0.82 PV injeksi dan komposisi fluda injeksi yang sama, sehingga menunjukan bahwa pendesakan akan lebih baik pada sudut orientasi yang semakin mengarah vertikal.


Deskripsi Alternatif :

Berdasarkan penelitian-penelitian sebelumnya injeksi CO2 tercampur mampu menguras minyak hingga 60-90% minyak mula-mula namun kadangkala tekanan tercampur minimum CO2 jauh lebih besar dari pada tekanan rekah formasi sehingga injeksi CO2 tercampur menjadi terbatas. Carbonated water flooding merupakan salah satu metode yang dikembangkan untuk mengatasi hal tersebut.
Carbonated Water Flooding aalah metode peningkatan perolehan minyak (EOR) yang menggunkan CO2 sebagai fluida terlarut dalam air. CO2 terlarut didalam air akan meningkatkan viskositas air injeksi dan menurunkan mobilitasnya. Dilain pihak, selama pendesakan CO2 terlarut akan melepaskan diri dan mekarut kedalam minyak sehingga menurunkan viskositas minyak dan juga mengembangkan minyak
Dalam penelitian ini digunakan peralatan Core Flood TM-ITB hasil rancang bangun, dan sebagai variabel divariasikan 3 (tiga) kompisisi tingkat kejenuhan CO2 minyak. Kemudian dibandingkan pula terhadap injeksi air murni (waterflood).
Dari hasil penelitian ini diperoleh bahwa semakin tinggi tingkat kejenuhan CO2 didalam air akan semakin meningkatkan perolehan minyak. Apabila dibandingkan dengan injeksi air murni, Carbonated water floodng mampu meningkatkan perolehan minyak antara 5.46%, 13.55%, dan 24.07%, masing-masing untuk tingkat kejenuhan CO2 dalam air 24.22%, 48.42% dan 72.6%. kemudian berdasarkan sudut orientasi pendesakan care yaitu vertikal keatas (90o), miring (45o) dan horizontal dengan arah pendesakan minyak dari bawah, masing-masing memberikan perolehan minyak 68.33%, 62.19% dan 52.18% pada 0.82 PV injeksi dan komposisi fluda injeksi yang sama, sehingga menunjukan bahwa pendesakan akan lebih baik pada sudut orientasi yang semakin mengarah vertikal.


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......

Penambangan Hidrokarbon di Laut-Dalam, Frontier Terbaru Industri Perminyakan

Lapangan hidrokarbon West Seno di pinggiran Selat Makassar yang baru-baru ini telah berproduksi menandai babak baru eksplorasi dan eksploitasi perminyakan di Indonesia. Kenapa? Karena West Seno merupakan proyek laut-dalam (deepwater) pertama di Indonesia yang sudah berproduksi. Kedalaman laut (jarak dari permukaan air sampai ke dasar laut) di area tersebut berkisar 1000m. Di industri perminyakan, lebih dari 200m umumnya didefinisikan sebagai laut-dalam. Tulisan ini bermaksud untuk mengulas secara populer karakteristik dan tantangan memproduksi hidrokarbon (minyak bumi dan/atau gas alam) dari area laut-dalam tersebut.

Eksplorasi di laut-dalam dimulai pada akhir tahun 70-an di perairan Teluk Meksiko (Amerika Serikat), lepas pantai Brazil dan Afrika Barat. Selain di pinggiran Selat Makassar, di wilayah Australasia lainnya ada di lepas pantai Malaysia Timur dan Australia sebelah baratdaya. Berkembangnya penambangan laut-dalam ini dikarenakan dua faktor utama. Pertama, cadangan hidrokarbon dunia semakin menipis di daerah konvensional (daratan dan laut-dangkal) sementara permintaan selalu naik. Kedua, teknologinya terus berkembang dan makin dikuasai.

Karakteristik penambangan laut-dalam:
1. Biaya operasional yang lebih tinggi. Hampir semua aktivitas di atas rig lebih kompleks dan membutuhkan waktu yang lebih lama mengakibatkan ongkos sewa rig makin mahal (sewa rig untuk laut-dalam perharinya termasuk yang termahal).
2. Suhu air yang rendah, diperparah dengan gradien temperatur yang tak linear dan arus bawah laut. Di perairan tropis sekalipun, suhu air bisa mencapai sekitar 1-2 derC di kedalaman 1700m. Temperatur dingin dapat berefek ke:
A. Perubahan viskositas, densitas dan rheology fluida. Fluida ini bisa meliputi lumpur pemboran, campuran semen, fluida pengisi sumur ataupun fluida hidrokarbon itu sendiri.
B. Waktu yang dibutuhkan semen untuk mengering lebih lama. Semen umumnya didesain agar dapat mengeras secepat mungkin untuk menghindari intrusi gas ke dalam anular sumur dan juga mengurangi ongkos stand-by rig. Sumur tidak dapat diapa-apakan kalau semennya belum mengeras sempurna.C. Resiko hidrat-gas di sekitar permukaan dasar laut. Hidrat-gas terjadi karena efek tekanan tinggi dan suhu rendah, yang merupakan kondisi alami di dasar laut-dalam. Hidrat-gas yang bentuknya mirip es batu, berisi campuran air dan gas-alam, dapat menyumbat berbagai macam saluran, baik untuk produksi maupun untuk pengendalian sumur (well-control). Hidrat-gas juga dapat membuat dehidrasi semen dan lumpur pemboran. Untuk menghindarinya, yang praktis dilakukan adalah menambahkan garam atau glikol ke dalam lumpur. Cara lain, mensirkulasi lumpur atau memanasinya agar temperaturnya naik. Densitas lumpur juga bisa didesain serendah mungkin dalam batas aman untuk mengurangi tekanan hidrostatisnya.

C. Resiko hidrat-gas di sekitar permukaan dasar laut. Hidrat-gas terjadi karena efek tekanan tinggi dan suhu rendah, yang merupakan kondisi alami di dasar laut-dalam. Hidrat-gas yang bentuknya mirip es batu, berisi campuran air dan gas-alam, dapat menyumbat berbagai macam saluran, baik untuk produksi maupun untuk pengendalian sumur (well-control). Hidrat-gas juga dapat membuat dehidrasi semen dan lumpur pemboran. Untuk menghindarinya, yang praktis dilakukan adalah menambahkan garam atau glikol ke dalam lumpur. Cara lain, mensirkulasi lumpur atau memanasinya agar temperaturnya naik. Densitas lumpur juga bisa didesain serendah mungkin dalam batas aman untuk mengurangi tekanan hidrostatisnya.
D. Jika reservoarnya mengandung paraffin atau asphaltene, pada suhu rendah material ini dapat menjadi deposit solid dan dapat menyumbat atau mengganggu aliran fluida.

3. Margin tekanan reservoar (pore pressure) dan tekanan rekah (fracture pressure) umumnya tipis, sementara viskositas dan densitas lumpur malah naik akibat suhu dingin. Akibatnya sukar untuk menghindari larinya dan hilangnya fluida sumur ke dalam reservoar. Kondisi ini sering memaksa sumur didesain memakai casing (pipa tubular sumur) yang kompleks.
4. Bahaya shallow water/gas flow. Sering terjadi jika terdapat lapisan bebatuan yang masih labil pada kedalaman rendah dan berisi fluida (air atau gas) bertekanan tinggi. Suhu rendah menyebabkan semen konvensional akan memakan waktu yang lebih lama untuk mengeras. Pada saat fasa semen masih belum solid, air atau gas bertekanan tadi dapat masuk ke dalam anular sumur berisi semen lalu naik ke permukaan dasar laut. Jika ini terjadi, integrasi semen akan dikatakan gagal dan penyemenan remedial yang ongkosnya mahal harus dilakukan. Sebelum mulai menggali sumur, sering operator melakukan pekerjaan seismik di kedalaman rendah untuk mendeteksi kemungkinan adanya lapisan shallow water/gas tersebut. Juga sumur pendahuluan (pilot well) sering digali terlebih dahulu untuk mengumpulkan data-data reservoar di area tersebut. Selain itu, sekarang telah ditemukan sistem semen yang memakai ilmu chemistry canggih dan dapat menciptakan properti semen yang cocok untuk sumur laut-dalam. Walaupun pada suhu mendekati titik beku air, waktu mengerasnya semen dapat kita kontrol sesuai dengan yang diinginkan. Hasilnya, instrusi gas ke dalam anular dapat dicegah, waktu tunggu rig bisa dipercepat dan ongkos rigpun dapat ditekan.
5. Pengendalian sumur yang lebih sulit karena BOP (alat pencegah meledaknya sumur di permukaan/blow-out) terletak jauh di dasar laut dan properti lumpur yang berubah di suhu rendah. Lumpur merupakan salah satu komponen penting untuk pengendalian sumur. Kuantitas lumpur yang dipakai umumnya dalam jumlah besar, bisa lebih dari 4000 barrel (636m3), dan waktu sirkulasi sumur yang lama, menyebabkan lumpur harus dimonitor secara periodik agar masalah yang mungkin timbul dapat dideteksi dari awal. Dengan menganalisis properti lumpur dapat diprediksikan apa yang sedang atau akan terjadi di bawah sana. Berbagai sensor elektronik dan mekanik yang sangat akurat dipakai untuk mengambil data-data densitas, rheology, pH, konduktivitas, suhu lumpur dan lainnya secara real-time dan kontinyu.
6. Fasilitas produksi bawah-air yang harus tahan temperatur rendah dan tekanan hidrostatik air yang tinggi (bisa mencapai 5000psi atau 34.5MPa). Berbeda dengan laut-dangkal, umumnya kontur geografis permukaan dasar laut di daerah laut-dalam tidaklah datar, melainkan miring karena daerah ini merupakan batas paparan benua. Juga, sering kondisi permukaannya tidak stabil. Kedua hal ini mendorong diciptakannya fasilitas yang mengambang di dalam air, tidak duduk di atas permukaan dasar laut. Fasilitas yang harus reliabel dan kompleks ini mengakibatkan harganya sangat mahal. Umumnya juga sumur-sumur di laut-dalam terletak relatif jauh dari garis pantai atau jauh dari fasilitas pengumpulan hidrokarbon di darat. Untuk mengatasinya, sekarang sudah banyak dioperasikan fasilitas produksi yang mengapung di atas kapal atau platform (FPS-floating production systems dan EPS-early production systems). Dengan fasilitas ini, waktu pemrosesan hidrokarbon dapat dipersingkat dan minyak/gas dapat cepat bisa dijual. Uang yang diinvestasikan pun dapat lebih segera kembali.

Baru permulaan.
Selama 100-tahun sejarah penambangan hidrokarbon lepas pantai, sudah tak terhitung banyaknya perkembangan yang telah dicapai. Namun khusus di area laut-dalam tantangan yang sebenarnya barulah dimulai. Tingkat keberhasilan eksplorasi di laut-dalam naik dari 10% menjadi 30% sekarang. Sampai hari ini, laut-dalam telah menyumbang sebanyak 60milyar barrel (9.5 milyar m3) ke cadangan minyak dunia. Menurut estimasi, 95% dari area lautan yang potensial mengandung hidrokarbon tetapi belum dieksplorasi terletak di kedalaman lebih dari 1000m. Diperkirakan cadangannya mencapai angka 8-15 milyar barrel (1.3-2.4 milyar m3) minyak. Baru 25% dari cadangan laut-dalam tersebut yang telah/sedang dikembangkan dan hanya 5% yang sudah berproduksi.
Selama dekade terakhir, operator industri perminyakan berlomba-lomba membuat rekor di wilayah laut-dalam dengan mengaplikasikan berbagai teknologi canggih dan pengalaman. Semuanya sejalan dengan tujuan mencari dan memproduksi minyak dan gas untuk memenuhi kebutuhan peradaban manusia. Mengingat planet bumi sebagian besar permukaanya ditutupi lautan dan juga teknologi yang tidak pernah berhenti untuk berkembang, bolehlah kita tetap optimis bahwa minyak dan gas alam dunia akan masih terus ditemukan dan diproduksi sampai puluhan tahun ke depan. Laut-dalam telah menjadi frontier terbaru di kancah industri perminyakan, termasuk di Indonesia.

Penulis: Doddy Samperuru
Pemerhati teknologi perminyakan dan praktisi industri hulu perminyakan

Sumber : http://n-zafee.blog.friendster.com/


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......