Kamis, 18 Juni 2009

You're Beautiful




My life is brilliant.
My love is pure.
I saw an angel.
Of that I'm sure.
She smiled at me on the subway.
She was with another man.
But I won't lose no sleep on that,
'Cause I've got a plan.

You're beautiful. You're beautiful.
You're beautiful, it's true.
I saw your face in a crowded place,
And I don't know what to do,
'Cause I'll never be with you.

Yeah, she caught my eye,
As we walked on by.
She could see from my face that I was,
Fucking high,(Real version)
Flying high,(clean version)
And I don't think that I'll see her again,
But we shared a moment that will last till the end.

You're beautiful. You're beautiful.
You're beautiful, it's true.
I saw your face in a crowded place,
And I don't know what to do,
'Cause I'll never be with you.
You're beautiful. You're beautiful.
You're beautiful, it's true.
There must be an angel with a smile on her face,
When she thought up that I should be with you.
But it's time to face the truth,
I will never be with you.

Baca selengkapnya disini......

Rabu, 17 Juni 2009

Potensi Gunung Lumpur Membentang di Jawa

20080830072008

Para ahli geologi menyatakan bahwa potensi gunung lumpur (mud vulcano) membentang luas di daratan Pulau Jawa, sehingga di wilayah itu rentan terjadi semburan lumpur seperti yang terjadi di Sidoarjo, Jatim.

Staf Ahli geologi BP Migas Awang Harun Satyana mengatakan, terdapat jalur rentetan gunung lumpur yang terbentang luas dari Bogor hingga Sidoarjo.

"Masyarakat mungkin tidak akan pernah lupa terhadap kejadian fenomenal semburan lumpur yang terjadi di wilayah Jawa Timur itu, bahkan setelah dua tahun, lumpur Sidoarjo terus menyembur tanpa henti," ujarnya.

Bagi ahli geologi, kata dia, kejadian tersebut merupakan salah satu contoh tidak tepatnya perlakuan manusia terhadap alam karena kurangnya pengetahuan terhadap kegeologian.

"Kejadian ini sebenarnya sangat alami, bahkan beberapa pakar telah memetakan Indonesia sebagai wilayah yang rentan terhadap gangguan alam seperti itu," urainya.

Awang menjelaskan, beberapa juta tahun lalu, tepatnya di wilayah Kubah Sangiran terjadi hal serupa. Berdasarkan penelitian, Sangiran merupakan tempat hidup manusia purba pertama di Pulau Jawa dua juta tahun lalu.

"Kubah Sangiran kemudian tererosi pada bagian puncaknya, sehingga membentuk sebuah depresi. Pada depresi itulah, tersingkap lapisan-lapisan tanah secara alamiah," ujarnya.

Bahkan, kata dia, gunung lumpur ini telah menenggelamkan sebuah kerajaan di Jawa Timur sekitar 400 tahun silam.

Sedangkan Edi Sunardi, Ketua Pengembangan Ilmu IAGI, yang juga dosen Geologi Unpad, berpendapat, secara geografis, daerah Jatim memiliki peta geologi yang spektakuler karena memiliki kandungan minyak, gas, serta gunung lumpur.

Bahkan, terdapat satu jalur dari arah Barat ke Timur sampai dengan Selat Madura yang dipenuhi dengan gunung lumpur.

Hal senada dikatakan Prof Sukendar Asikin, ahli tektonik dan geologi struktur dari Institut Teknologi Bandung (ITB), bahwa tidak menutup kemungkinan fenomena Kubah Sangiran terulang kembali di beberapa wilayah di Pulau Jawa.

Menurut dia, erupsi Kubah Sangiran terjadi akibat beratnya beban gunung api yang menjulang di wilayah itu, yang mengakibatkan keluarnya cairan dari dalam perut bumi.

"Artinya, kejadian itu bisa terulang kembali jika beban di atas permukaan tanah di beberapa wilayah di Pulau Jawa terlalu berat, misalnya oleh kepadatan kota," ujarnya.

Dia mengatakan, pesatnya pembangunan tanpa diimbagi dengan kajian geologi, berpotensi membuat kejadian seperti lumpur Sidoarjo terulang kembali.

Kekhawatiran ini, lanjutnya, memang beralasan karena saat ini terlihat pesatnya pembangunan kota, dan bahkan terjadinya eksploitasi tanah secara besar-besaran untuk menghasilkan batu bara dan timah.

Di sisi lain, kata Asikin, kesadaran akan penghijauan lingkungan semakin berkurang, akibat tidak pahamnya masyarakat mengenai musibah yang mengancam.

"Kurangnya pengetahuan pemerintah dan masyarakat mengenai geologi diduga sebagai penyebab awal terjadinya bencana. Pemerintah memberikan izin eksplorasi, dan masyarakat melaksanakannya tanpa berbekal pengetahunan geologi," ujarnya.

Namun, kata dia, hal itu mungkin tidak menjadi masalah jika setiap lapisan tanah yang mengandung kekayaan alam tidak berpotensi menimbulkan bencana.

Pada kenyataannya, kekayaan bumi itu kerap berdampingan letaknya dengan potensi bencana, seperti kejadian lumpur Sidoarjo.

"Ini memang unik, di wilayah yang termasuk jalur gunung lumpur itu ternyata terkandung minyak yang cukup besar, kondisi ini mirip dengan kejadian pengeboran minyak di wilayah Azerbaijan dan Iran," jelasnya.

Menurut dia, pengeboran minyak di wilayah itu menghasilkan sedikitnya 1,5 juta barel per hari, namun juga menyemburkan lumpur dari perut bumi mirip dengan kejadian di Sidoarjo.

Pihaknya melihat, atas beberapa peristiwa alam yang terjadi, sudah selayaknya perhitungan geologi menjadi pertimbangan sebelum melakukan eksplorasi.

"Pada dasarnya pengebor itu tidak salah, karena wilayah itu mengandung minyak. Permasalahan utamanya ialah, masih rendahnya kesadaran terhadap kelestarian lingkungan sebagai basis pembangunan," ujarnya.

Saat ini, kata dia, setelah terjadi bencana lumpur Sidoarjo, pengetahuan mengenai kegeologian menjadi penting, khususnya berkaitan dengan penemuan sedikitnya 20 cekungan baru di Indonesia.

www.republika.co.id

Baca selengkapnya disini......

Chevron Diperpanjang Jadi Pengelola Blok Langgak

PT Chevron Pacifik Indonesia (CPI) untuk sementara ditunjuk mengelola kembali blok migas Langgak. CPI mengelola kembali blok tersebut setelah pemerintah belum menetapkan operator baru.

"Agar tidak terjadi stagnasi propduksi minyak di block langgak, perusahaan kami ditunjuk kembali untuk melanjutkan pengelolaannya. Penunjukan ini sehubungan belum adanya penetapan operator baru yang akan menggantikan CPI," kata Manager Policy, Government & Public Affairs PT CPI, Djati Sussetya dalam perbincangan dengan detikFInance Selasa (15/1/2008) di Pekanbaru.

Menurut Djati, masa kelola PT Chevron di blok Langgak di wilayah Kabupaten Kampar dan Rokan Hulu akan berakhir 19 Januari 2008.

"Perpanjangan pengelolaan di blok Langgak ini atas rekomendasi BP Migas kepada Meteri ESDM. Langkah ini diambil karena belum adanya penetapan operator baru," kata Djati.

Djati menambahkan, rekomendasi perpanjangan pengelolaan blok Langgak oleh PT CPI tidak dijelaskan soal batas waktunya. Tapi paling tidak, kata Djati, bila dalam waktu dekat ini pemerintah menunjuk operator baru, maka dengan sendiri CPI siap hengkang dari ladang minyak dengan produksi 400 barel per hari itu.

"Bila sudah ditunjuk operator baru, maka PT CPI siap menyerahkan pengelolaannya. Namun demikian penyerahannya tidak serta merta hari itu juga, tentulah harus ada tenggat waktunya minimal 3 bulan sejak penunjukan. Sebab, segala sesuatunya harus diperisiapkan terlebih dahulu," terang Djati.

Hingga kini Pemerintah Provinsi (Pemprov) Riau bersama dengan Direktorat Jendral (Dirjen) Minyak dan Gas Bumi (Migas) belum dapat menentukan dua perusahaan daerah yang ditunjuk untuk menjadi operator pengganti pengelolaan blok Langgak. Kedua perusahaan pengganti yang diunggulkan untuk mengelola block langgak yakni PT. Riau Petrolium dan PT Sarana Pembangunan Riau (SPR).

Kepala Dinas Pertambangan dan Energi (Distamben) Riau M. Yafiz membenarkan tentang perpanjangan kontrak PT CPI dalam pengelolaan blok Langgak. Namun, pihaknya belum menerima surat resmi dari Dirjen Migas terkait perpanjangan tersebut.

"Saya sudah menerima telpon dari salah seorang direktur di Dirjen Migas tentang perpanjangan kontrak PT CPI dalam pengelolaan blok Langgak. Perpanjangan akan berakhir sampai ada operator yang ditunjuk,"

Chaidir Anwar Tanjung - detikFinance.com

Baca selengkapnya disini......

Produksi Minyak Chevron Indonesia Bertambah 1.000 Bph


Chevron Pacific Indonesia (CPI) meresmikan pertambahan produksi minyaknya sebanyak 1.000 barel per hari dari lapangan North Duri Area 12. Secara bertahap, produksi dari lapangan ini akan mencapai puncaknya sebesar 34.000 pada 2012.

Demikian disampaikan Presiden Direktur CPI Suwito Anggoro dalam peresmian produksi North Duri Area 12, Duri, Riau, Rabu (26/11/2008).

"Kami berterimakasih dengan insentif yang diberikan pemerintah, dan kami harapkan kemudahannya bisa berlanjut untuk pengembangan area lainnya," katanya.

Menteri ESDM Purnomo Yusgiantoro mengatakan, investasi untuk pengembangan lapangan ini mencapai US$ 450 juta. Menurutnya, investasi ini merupakan merupakan keberhasilan tersendiri apalagi di tengah krisis finansial seperti sekarang.

"Dengan investasi US$ 450 juta, dalam keadaan krisis sangat bermanfaat, dengan invest ini dan kegiatan ekonomi jadi bergerak," katanya.

North Duri Area 12 merupakan pengembangan terbaru dari bagian utara Lapangan Duri yang merupakan lapangan produksi terbesar Chevron di Indonesia. Produksi Lapangan Duri yang ditemukan pada 1941 ini sekarang sekitar 200.000 barel per hari.

Pengembangan Lapangan Duri menggunakan teknologi Enhance Oil Recovery (EOR) dengan menginjeksikan uap (steamflood) ke dalam reservoir. Injeksi uap ini terbukti bisa meningkatkan produksi hingga lebih dari tiga kali lipat.

Metode yang sama akan digunakan untuk pengembangan North Duri Area 12 yang baru saja berproduksi. Menurut Dirjen Migas Evita Legowo, injeksi uap yang akan dilakukan April 2009 bisa meningkatkan produksi dari area ini.

"Uapnya baru diinjeksikan April nanti, sehingga produksinya bisa naik bertahap dari 1.000 menjadi 2.400, lalu puncaknya 2012 jadi 34.000 barel per hari,"

Baca selengkapnya disini......

Selasa, 16 Juni 2009

Trans-Alaska Pipeline System

The Trans-Alaska Pipeline System (TAPS) is a major US oil pipeline connecting oil fields in northern Alaska to a sea port where the oil can be shipped to the Lower 48 states for refining.

Alaska_Pipeline_Map_small.png
Map of the pipeline (Larger Version)

Oil was discovered at Prudhoe Bay in 1968. A pipeline was considered the only viable system for transporting the oil to the nearest ice-free port, over 800 miles (1,280 km) away at Valdez. The oil companies with exploitation rights grouped together as the Alyeska consortium to create a company to design, build and then operate the pipeline. US President Richard Nixon signed the Trans-Alaska Pipeline Authorization Act into law on November 16, 1973, which authorized the construction of the pipeline.

The 800 mile route presented special challenges. As well as the harsh environment, the need to cross three mountain groups and many rivers and streams, the permafrost of Alaska meant that almost half of the pipeline's length had to be elevated rather than buried as normal to prevent the ground melting and shifting. There were five years of surveying and geological sampling before construction began.




The single 48 inch (1.22 m) diameter pipeline was built between March 27, 1975 and May 31, 1977 at a cost of around $8 billion. The pipe was constructed in six sections by five different contractors employing 21,000 people at the peak of work, 31 were killed in accidents during construction. There are twelve pump stations, each with four pumps. Usually only around seven stations are active at one time.

Oil began flowing on June 20, 1977. Since then over 13 billion barrels (2 billion m³) have been pumped, peaking at 2.1 million barrels (330,000 m³) per day in 1988. Around 16,000 tankers have been loaded at the Marine Terminal at Valdez. The terminal has berths for four tankers and cost almost $1.4 billion to build. The first tanker to leave the terminal was the ARCO Juneau on August 1, 1977.

The worst spill relating the pipeline was in 1989 when over 260,000 barrels (41,000 m³) were lost by the Exxon Valdez. The highest losses from the pipeline itself was in February 1979 when malicious damage led to more than 16,000 barrels (2,500 m³) leaking out at Steele Creek. From 1977-1994 there were 30 to 40 spills a year on average, the worst years in terms of number of incidents were 1991-1994 when there were 164 spills, although none were major. Since 1995 the number of spills has been sharply reduced with total losses from 1997-2000 totalling only 6.89 barrels (1 m³).

See also: Trans-Afghanistan Pipeline (TAP)


Free Signature Generator

Free Signature Generator

Baca selengkapnya disini......

Capex Pertamina Geothermal Capai US$130 Juta

PT Pertamina Geothermal Energy menyiapkan capital expenditure (capex/belanja modal) sebesar US$130 juta pada tahun ini. Dana itu akan digunakan untuk investasi.

"Kita lihat perkembangannya, kalau kegiatan meningkat maka bisa nambah lagi anggaran capex-nya," ujar Direktur Utama PGE Abadi Poernomo dalam Press Gathering Wartawan di Area Geothermal Lahendong, Sulawesi Utara, Jumat 20 Februari 2009.

Menurut dia, perseroan saat ini sedang pengembangan panas bumi di Ulu Belu,Lumut Balai serta Lahendong Unit 5 dan 6. Untuk sementara, dana yang digunakan diambil dari dana talangan induk usaha yakni PT Pertamina. "Sampai kita mendapatkan dana pinjaman baik dari dalam maupun luar negeri," kata dia.

Perseroan, ujarnya sudah menjajaki pendanaan dari World Bank yang baru tahap feasibility study dan dari Bank Pembangunan Jerman (KWF) belum ada tindak lanjut. Mereka baru datang ke tempat saya," kata dia.

Abadi menjelaskan KFW berminat menggandeng PGE dari sisi hulu hingga hilir dengan skema pendanaan yang dijajaki bisa berupa goverment to goverment maupun komersil.

Saat ini, dia mengatakan harga jual keekonomian tarif listrik panas bumi minimal US$ 7 sen per kilowatthours (kWh). "Minimal US$7 sen maksimal US$9 sen per kWh, tidak bisa kurang," tuturnya.

Baca selengkapnya disini......

Senin, 15 Juni 2009

Proyek Shell Snake Well

As the oil and gas industry scrambles to meet growing worldwide demand for hydrocarbons with a workforce diminished in experience and tight resources, producers have been forced to develop and operate their fields in more innovative ways. This mandate is at the heart of the Smart Fields initiative, Royal Dutch Shell’s ongoing technology program that aims to maximize production and over-life value while driving efficiency gains.



According to Shell’s 2005 Global Energy Scenarios report, worldwide hydrocarbon demand will grow by an extra 120 MMBOEPD by 2025, and the recently released Medium-Term Oil Market Report from the International Energy Agency predicts global oil demand to rise by an average of 2.2% per year until 2012. In order to meet this demand, producers will need to extract more hydrocarbons from existing reservoirs and increase production from unconventional reserves (such as tar sands and heavy oil) and environmentally challenging locales (like the Arctic).

Smart Fields technology was created to face these challenges head-on, by employing a suite of skills, workflows and technologies to continually optimize producing assets. Shell has long been considered a pioneer in the Smart Fields concept, so much so that the company even copyrighted the term.

Charlie Williams, Shell’s Chief Scientist for Well Engineering and Production, and Tom Webb, Shell’s Smart Fields Coordinator for the Americas, recently provided an update on the Smart Fields process and gave some insight into where it is headed.

According to Williams, the current suite of Smart Fields offerings is a far cry from what was available or envisioned at the beginning of his career. “I’ve been associated with previous generations of Smart Fields since I started with Shell 35 years ago, and back then it was referred to as ‘computer-assisted operations’,” Williams said.

Shell’s first foray into Smart Fields occurred in the late 1960s at High Island 160, in the shallow Gulf of Mexico waters off the Texas coast. “With this first application, we were really interested in automating and controlling certain rudimentary functions in the surface production facilities. We were using vacuum tube technology there, and we had the whole bottom floor of one of the employee quarters buildings full of all this vacuum tube equipment.”

Smart Fields began to evolve as Shell engineers realized that more could be done than just simple automation. “Much of our onshore production in West Texas and New Mexico was on beam pump artificial lift,” Williams continued. “It was quite apparent that there was much opportunity to not only computer-control, but also to computer-optimize, our operations. So we put in control systems that allowed us to optimize production from each artificial lift well and do automatic well tests.”

Shell’s current concept of Smart Fields started with Smart Wells. The Smart Wells concept has come to mean the design of completions that incorporates downhole equipment to control flow into and away from the well, combined with sensors that measure pressure, temperature, flow, fluid composition and potentially seismic events. The data acquired by these sensors are transmitted to the surface through electrical cable or fiber optics, and engineers then use this data to analyze changes in the reservoir. If needed, optimization decisions are then implemented by sending commands to the downhole flow control equipment.

Shell reports that Smart Wells add value to well operations on several fronts, such as improving hydrocarbon recovery from the reservoirs by as much as 15%; controlling the production of unwanted fluids (water and/or gas); reducing the need for costly well interventions; and providing insurance against any reservoir uncertainties.

The efficiency gains afforded are another big benefit, according to Williams. “In the old days, in order to collect data in onshore oilfields, you had to drive hundreds of miles to each of the wells to collect what you needed… Not exactly the best use of someone’s time.”

Smart Wells technology proves a charm for snake wells

“Another benefit to Smart Wells,” said Webb, “is that you don’t need to drill so many holes in the ground. You can drill fewer wells, but these wells will have a farther reach into more production zones. Actually, that’s where the concept of snake wells comes in.”

Shell’s snake wells, with their tortuous horizontal paths cutting through undulating layers of shale and sand to penetrate a number of producing zones, were perfect candidates for Smart Well control and data gathering. Additionally, snake wells incorporate advanced directional drilling techniques, such as steerable drill bits and software that generates detailed models of underground geology. This allows drillers to hit production targets that are less than 2 m across and miles below the surface.

shell-snake-illus-web.jpg

Snake wells got their debut at Shell’s Brunei oilfields in 2003. The first was at the Iron Duke brownfield, in which a snake well was drilled through an area that was 28 m thick, 2 km long and 300 m wide. In addition, the drilled well had to avoid a nearby layer of natural gas whose pressure drove oil to the producing well.

Shell reports that although the snake well at Iron Duke added complexity and a corresponding degree of risk, the field would not have been economic otherwise. The Iron Duke snake well program reportedly yielded a 15% increase in production and delayed water breakthrough by 2 years.

Since then, Shell has reported similar success with other Smart snake wells drilled on the nearby Champion West field, which tapped 11 separate oil pockets and added over 25,000 b/d of production.

While Smart Wells provide a great deal of data, the natural question for Shell engineers then becomes “What do we do with it?”

Williams explained that the concept of Smart Wells showed Shell the power of being smart beyond the wellbore. “Smart Wells became the foundation that data providers used to build the Smart Field concept. Once we had the Smart Wells, we could move into surface facility control and ultimately total reservoir control. We don’t want to optimize just the wells, but we want to optimize production from the reservoirs themselves. You could extend this concept on to an over-life reservoir control process… I see it as a natural evolution.”

shell-smart-assets-web.jpg

Part of this Smart evolution involved the creation of real-time drilling and production operation support centers. Explained Webb, “These centers allow engineers to see the drilling data on many wells all over the world and make decisions about those different wells in one location, without having to visit them in person.”

Drilling centers like the one at Shell’s Westhollow facility in west Houston are already up and running, and real-time production optimization centers will open soon.

Not only do these centers provide drilling and production data in real time, but they also provide the data in the most convenient form and format for the end user. “These centers accumulate data in a format that enables your analysis and decision making,” Webb continued. “Smart Fields technology then links up what used to be several different modeling and software programs, and incorporates them into a unified optimization system that supports decision making.

“Ultimately, what you see on the screen should be only what you need to see for your job function,” said Webb. “You don’t need to create a lot of different custom reports, because that’s done for you.”

These real-time centers allow team members to be in the same room either virtually or physically, which Webb considers a major benefit given the current shortage of skilled people at all levels of a field operation. “To the extent that you can bring the data and the decisions to the people, rather than vice versa, then all the better. This is particularly true since many people are working on more than one project in more than geographic location.”

Team members can discuss and visualize a project or field system together and then have the results transmitted back for debriefing and review. “It allows for collaboration among groups and really improves your whole project planning and teamwork capability,” Williams added. “Everyone has the same data at the same time in the same place… It’s become an integral part of the work process rather than something you do in your spare time.”

Full Smart Fields success requires new attitudes

shell-champwest-web.jpgPart of Williams’ job during the past 3 years has been to act as a champion of the Smart Fields process, spreading the word through web casts and site visits. “At my talk at the SPE Digital Energy Conference earlier this year, I stressed that Smart Fields should really be thought of as a different way to do your work,” Williams said. “Most people think of Smart Fields only on the hardware and software side, the end elements. These components are really just enablers to allow you to do your work more efficiently. The key is to work in a new way, and allow the computers to enable that work.”

Williams pointed out that it is the work process that is the first critical part of the concept. “You don’t buy the computers first and then figure out how to do the work. You have to decide on the work process first and how that process can add the most value, and then use the Smart Fields to enable the work.”

Another critical component is the people who will be expected to use this technology, and Williams stressed that getting the operations people informed early on about the positive benefits of the system is essential. “Because we are talking about an integrated work process, you have to start with the people in operations first.”

Webb has also been championing the Smart Fields concept through a series of presentations at various conferences like the 2007 Offshore Technology Conference (OTC) in Houston, Texas, U.S.A. It was there that Webb stressed that making an asset ’smart’ takes some up-front planning and forethought on the asset’s production goals.

“Prior to putting any monitors or tools into the well,” said Webb, “you need a careful design methodology that examines those parameters you want to manage really well.”

Webb also stated that because the technology is modular, an operator should use only those components that are worthwhile for the asset. “You should use the right level of ’smartness’ for your particular field location that makes good business sense. Because the components are modular, you can deploy different parts at your particular location without adding unnecessary complexity.”

Where does Smart Fields go from here?

In order to get the full benefit of Smart Fields, Williams and Webb acknowledge that several technical hurdles have to be overcome. “Ideally we want to be able to optimize reservoir performance on a 24 hr/day, 7 day/wk basis using many multiple tools,” said Williams. “The functionality of all the software is not quite there yet to do that.”

This functionality can only come from software packages that seamlessly integrate with each other without the need for complicated interfaces. “Integrated software would definitely help our models and systems work faster, which is what you need when you’re trying to do real time optimization,” Williams continued. “While I don’t think we’ll be doing reservoir simulation every day, I can see a definite need for faster processing on models that need quick decisions, such as those designed to understand slugging and flow assurance in deepwater subsea pipelines. Having the models work faster to analyze a complex system like that would be a great help.”

Webb sees more work to be done in bolstering both databases and documentation. “Getting a truly common database for Smart Fields users on a global basis would be invaluable, but this will be hard to do. Once you have that database, how do you begin to populate it with useful documentation, the kind that will help people understand which processes work the best?”

Even if the right documentation is there, current information systems make the task of finding it too difficult, according to Webb. “Sometimes, you spend 20 to 30% of your time and effort just finding the information, so we will need to improve our systems to let us work more efficiently.”

The last frontier, according to Williams, is improved decision support. “I’d like the technology to help me make better decisions, not just give me the data. However, there is a good deal of work currently going on in this arena, so I’m encouraged.”

Smart Fields benefits fields green and brown

At his OTC address, Webb stated that Shell is planning Smart Fields installations for more greenfields than brownfields, mainly because it is far easier to install and implement this technology from the start rather than retrofitting fields.

Shell is currently running 12 asset programs with more than 25 component projects around the world, and they will soon be joined by several greenfields such as the GOM’s Perdido field in 2009, which will be fully smart. Smart Wells have recently been installed at the Vadelyp oil field in Russia by Salym Petroleum Development (a 50-50 joint venture between Shell and Russian oil company Evikhon), which marks the first use of this technology in Russia.

“It’s interesting how these things come together to support themselves,” Williams continued. “It is really opportune that as Shell is moving into these far-flung and technically complicated projects, we now have these smart tools at our disposal to solve the challenges.”

To learn more about the Smart Fields technology platform, please visit www.shell.com/home/content/technology-en/developing_and_producing/dir_developing_and_producing_14122006.html, or contact Charlie Williams at Charlie.williams@shell.com.


Baca selengkapnya disini......